
David E. Jaffe, BNL 1 28 Feb 2006

Some antineutrino topics

• ν → ν transitions (Details are in MINOS-doc-1571.)

1. Measurement technique

2. Physics effects

3. Beam and detector effects

4. Prospects

• Constraining the νe flux from νµ measurements

• Improving the understanding of the ν beam
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ν → ν measurement technique

Look for a deviation in relative rates of µ− and µ+ produced by beam νµ

and νµ in the far detector (FD) based on the measured rates in the near

detector (ND).

In other words, predict the observable number of µ+ in the FD based on

the observed numbers of µ− in the FD and µ± in the ND.

What physics effects can change the relative amount of beam νµ and νµ as

they go from FNAL to Soudan?
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Physics effects and ν → ν

1. If ν are Majorana particles, then P (ν → ν) ∝ mν/Eν (< 10−10 for

Eνµ
∼1GeV)

2. if ν are Dirac & Majorana particles, then

P (ν → νsterile) ∼ 3 × 10−7 sin2(1.27∆m2L/E)

3. CPT implies P (νµ → νµ) = P (νµ → νµ), but CPTV

does not necessarily imply P (νµ → νµ) 6= P (νµ → νµ).

4. Matter effects and/or CPV can change the relative νµ and νµ fluxes.

Limited to a few % at < 2 Gev (see figure)

Refs: Langacker & Wang, PRD58 093004; Kostelecky & Mewes, PRD69 016005
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Allowed range for P (νµ → νe) − P (νµ → νe) at FD

The difference in the probabil-

ity of νµ → νe and νµ →

νe oscillations for 735 km base-

line and an average density of

3g/cm3 assuming θ13 = 12.5◦,

∆m2
13 = (0.0014, 0.0033) eV2 and

δ = (0, 360)◦. The various su-

perimposed curves are the result

of scanning ∆m2
13 and the CP-

violating parameter δ over the

stated ranges.

 θ13 =12.5 degrees
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Technique: Detector and beam effects

Technique: Predict number of observable µ+ in FD (≡ n+
FD) based on

observed number of µ− in FD (≡ n−

FD) and µ± in ND (≡ n±

ND).

Let Nν

F,N ≡ true number of νµ interactions in FD,ND (similarly for νµ),

then

Nν

N = (n−

N − b−N)p−N/ǫ−N where

• b−N ≡ the expected number of observed background µ− at the ND,

• p−N ≡ the purity of µ− selection at the ND, the purity is the fraction of

correctly tagged νµ , and

• ǫ−N ≡ the efficiency of µ− selection at the ND.
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Technique: Detector and beam effects (cont.)

Also assume that the

relative rates of νµ and

νµ at the two detectors

can be written as

N ν̄

F/Nν

F = K×N ν̄

N/Nν

N

where K is a cor-

rection factor within

∼10% of unity.

Figure: Ratios wrt νµ

flux and FD/ND ratio of

ratios with GNUMI V15

CC events.  Solid(dashed) = Far(Near) detector
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Technique: Detector and beam effects (cont.)

• Purity p of µ± selection differs at FD,ND. A MC-based correction

must be applied. See MINOS-doc-1571 for a proposal to use stopped µ

decays to check the MC estimate.

• µ± selection efficiency ǫ differs at FD,ND. This must also be corrected

using MC. Can the correction be checked with a cosmic data/MC

comparison?

• By definition, background is a reconstructed µ candidate that is not

produced by a beam νµ or νµ. µ candidates from νe, ντ , νe or ντ

interactions and cosmic µ± are possible backgrounds.

Jeff Hartnell showed that high purity (p+
N > 95%) and low background

(< 1% relative) could be achieved in ND MC (next slide).
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taken from MINOS-doc-1409-v1, Jeff Hartnell, Oxford Jan 2006
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Technique: Some other effects and comments

Other effects:

• Charm production and subsequent semileptonic can produce wrong

sign muons. This must be taken into account in the MC-estimated

purity.

• Different energy scales at ND and FD complicate the use of the ND

ratio to produce the FD ratio.

Comments:

• All beam energies, not just LE-10, should be used for this

measurement.

• Rock muons should probably be used mainly because they can increase

the FD sample by ∼70% (Ref:M.L.Marshak, MINOS-doc-1379-v1)
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Prospects for a νµ → νµ measurement

The deviation ∆ in the expected µ+ rate at the FD is

∆ ≡ n+
F −

{

K × E × P × (n−

F − b−F )
n+

N − b+
N

n−

N − b−N
+ b+

F

}

where

• E ≡
ǫ
+

F

ǫ
−

F

×
ǫ
−

N

ǫ
+

N

is the efficiency double ratio, and

• P ≡
p
−

F

p
+

F

×
p
+

N

p
−

N

is the purity double ratio.
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Prospects for a νµ → νµ measurement (cont.)

Approximate uncertainty in ∆:

δ∆ ≈

√

n+
F + R2n−

F + (Rn−

F )2 × (δK2 + δP 2 + δE2)

Under these assumptions:

• No correlations between the terms in ∆,

• K ≈ P ≈ E ≈ 1,

• Background is negligible, and

• drop all terms multiplied by the far-to-near ratio,

(n−

F − b−F )/(n−

N − b−N).

I also assume that R ≡ (n+
N − b+

N)/(n−

N − b−N) ≈ 1/10 and n−

F /R ≈ n+
F to

produce following figure:
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Three standard dev. limits in observed n
+

F vs expected n
+

F (red is stat. only)
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Measuring νµ → νµ: Some conclusions

δ∆ ≈

√

n+
F + R2n−

F + (Rn−

F )2 × (δK2 + δP 2 + δE2)

• Statistical uncertainty in the number of observable µ+ in FD

dominates the ability to limit νµ → νµ transitions.

• Systematic uncertainty associated with the ND/FD extrapolation (K)

needs to be kept at the ≤ 10% level. It may be worthwhile to consider

an analysis that ignores the ND and uses MC to predict νµ/νµ at the

FD (idea from P.Ochoa).

• Measurement of purity (p), efficiency (ǫ) and background (b) from

data is desired, but may not be essential. ( Since p, ǫ appear as double

ratios and b is probably negligible)

• Ultimately must develop methods to use νµ → νµ results to limit (or

measure!) parameters of models that predict νµ → νµ transitions.
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Constraining the νe flux from νµ measurements

Motivation: Beam νe are an irreducible and especially pernicious

background in the νµ → νe appearance analysis.

NC CC ντ Beam νe νe From p.15 of MINOS-doc-1143

20.4 4.7 1.7 4.7 6.2 by Mayly Sanchez

Milind Diwan suggested that a measurement of the νµ flux could be used

to constrain the νe flux because νe production is dominated by

µ+ → e+νµνe at low energy.

To this end, the relative fluxes at the center of the ND were studied with

GNUMI V15 as well as the number of CC interactions in Carrot ND MC

processed with R1.18.2. Reconstruction effects not yet investigated.

The tentative conclusion is that an O(100%) constraint on the νe flux at

the ND should be possible, see figure on following page (and at end of

presentation).
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νµ CC interactions at ND, carrot MC, R1.18.2, not norm’ed to POT
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CC interactions in ND Carrot MC LE-10 185A (Not normalized to POT)

Method: Estimate νµ from π, K for 10 < Eν < 20 GeV and extrapolate to

< 10GeV using MC.
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Summary

• An analysis method to search for νµ → νµ was presented. The

primary uncertainty is due to the statistics of the number of

observable FD µ+. The main systematic uncertainty is due to

knowledge of the beam νµ to νµ ratio. Details in MINOS-doc-1571.

• Approximately 15% of the low energy νµ CC rate at the ND is due to

νµ from µ+ decay. It should be possible to estimate this contribution

to the νµ CC rate using higher energy data and MC and thus

constrain low energy, beam νe flux.

• Measurement of the ν flux should improve the knowledge of the ν flux

(statement of the obvious?)

Thanks to M.Bishai, M.Dierckxsens, M.Diwan, J.Hartnell, A.Marino,

P.Ochoa, B.Viren.
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Backup
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νµ flux at ND from GNUMI V15

Energy(GeV) of muon aneutrinos at ND per m2 per POT (weighted)
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νe flux at ND from GNUMI V15

Energy(GeV) of electron neutrinos at ND per m2 per POT (weighted)

Electron neutrinos
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ND CC rates from “Official Beam Plots”
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